Dimensioning Standards
Dimensioning Standards

- In order for the drawings to be dimensioned so that all people can understand them, we need to follow standards that every company in the world must follow. Standards are created by these organizations:

 - ANSI
 - ISO
 - MIL
 - DOD
 - DIN
 - JIS
 - CEN
Standards Institutions

• **ANSI** - American National Standards Institute. This institute creates the engineering standards for North America.

• **ISO** - International Organization for Standardization. This is a worldwide organization that creates engineering standards with approximately 100 participating countries.
Standards Institutions

• The United States military has two organizations that develop standards.
 – **DOD** - Department Of Defense
 – **MIL** - Military Standard
Standards Institutions

- **DIN** - Deutsches Institut für Normung. The German Standards Institute created many standards used worldwide, including the standards for camera film.
- **CEN** - European Standards Organization.
Dimension Components

- Dimension Text
- Dimension Line
- Extension Lines
- Arrow Head
Dimension Text Guidelines

If the dimension text will not fit between the extension lines, it may be placed outside them.
Dimension Text Guidelines

Dimension text is placed in the middle of the line both horizontally and vertically.
Dimensioning Methods

- Dimensions are represented on a drawing using one of two systems, unidirectional or aligned.
- The \textit{unidirectional} method means all dimensions are read in the same direction.
- The \textit{aligned} method means the dimensions are read in alignment with the dimension lines or side of the part, some read horizontally and others read vertically.
Dimensioning Methods

Unidirectional
Dimensions are placed so that they can be read from the bottom of the drawing sheet. This method is commonly used in mechanical drafting.

Aligned
Dimensions are placed so the horizontal dimensions can be read from the bottom of the drawing sheet and the vertical dimensions can be read from the right side of the drawing sheet. This method is commonly used in architectural and structural drafting.
Classification of Dimensions

- **Size.** Dimensions are used to identify the specific size of a feature on an object.
- **Location.** Dimensions are used to identify the physical proximity of a feature to another feature within an object.
Linear Dimensioning

• Chain Dimensioning
 – Dimensioning from feature to feature
 – Common dimensioning technique
Chain Dimensioning Examples

METHOD 1
- Dimension from feature to feature across entire part
- Manufacturing inaccuracies can accumulate

METHOD 2
- Dimension from feature to feature except omit one partial dimension in the chain
- Dimension overall length/width/height to limit manufacturing inaccuracies
- Preferable chain dimensioning method
Datum Dimensioning

- Datum Dimensioning
 - Dimensioning from a single point of origin called a DATUM
 - Reduces dimensional deviations in manufactured parts because each size/location dimension is referenced to a single point
Datum Dimensioning

The dimensions originate from a common point (DATUM) of the part.
Dimensioning Symbols

- Degree Symbol
- Reference Symbol
- Diameter Symbol
- Radius Symbol
- Counter Bore or Spot Face Symbol
- Counter Sink Symbol
- Depth or Deep Symbol
- Places or By Symbol
- Plus/Minus Symbol
- Center Line Symbol
- Square(shape) Symbol
- Arc Symbol
- Slope Symbol
Dimensioning Angles

- Angled surface may be dimensioned using *coordinate method* to specify the two location distances of the angle.
- Angled surfaces may also be dimensioned using the *angular method* by specifying one location for distance and the angle.
Dimensioning Chamfers

Two options for 45 degree external chamfers

- 45° x .125
- .125 x .125

External chamfers other than 45 degrees

Internal Chamfers
Dimensioning Arcs and Circles

- Arcs and circles are dimensioned in views that show the arc or circle.
- Arcs are dimensioned with a leader to identify the radius; in some cases, a center mark is included.
- Circles should have a center mark and are dimensioned with a leader to identify the diameter.
Dimensioning Arcs

Arrows can be inside or outside for small arcs.

Use a capital R to indicate radius.

Small arcs do not need center marks.

Large arcs need a center mark.
Fillets and Rounds

- **Fillet.** An inside radius between two intersecting planes
- **Round.** An outside radius applied to corners
Dimensioning Circles

Full circles should be dimensioned using the diameter.

Holes should use hole notes.

This hole note specifies a hole with a 0.50 diameter and 1.00 deep.
Dimensioning Circles

Cylindrical parts may be dimensioned in this manner

Note that the diameter symbol is used so that the dimension is not assumed to be linear
Points are placed along the contour of splines and dimensioned from a datum.
Dimensioning Splines and Curves

SECTION A-A
SCALE 1 : 1

DATUM
“X” indicates the number of places (or occurrences)

2 X indicates that there are two identical holes
Dimensioning Radial Patterns

Angles and radius values are used to locate the center of radially patterned features.